본문 바로가기

ETC

대기업 코딩테스트 준비 7 : 최단 경로

반응형

ndb796/python-for-coding-test: [한빛미디어] "이것이 취업을 위한 코딩 테스트다 with 파이썬" 전체 소스코드 저장소입니다. (github.com)

최단 경로

  • 한 지점 특정 지점까지의 거리
    • 이 경우가 많음
    • 다익스트라
      • 그리디 알고리즘 with 우선순위큐(heap) and 다이나믹프로그래밍
      • O(ElogV)
      • GPS
      • 방문하지 않은 노드 중 최단거리가 가장 짧은 노드 선택
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드 번호를 입력받기
start = int(input())
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)

# 모든 간선 정보를 입력받기
for _ in range(m):
    a, b, c = map(int, input().split())
    # a번 노드에서 b번 노드로 가는 비용이 c라는 의미
    graph[a].append((b, c))

def dijkstra(start):
    q = []
    # 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q: # 큐가 비어있지 않다면
        # 가장 최단 거리가 짧은 노드에 대한 정보 꺼내기
        dist, now = heapq.heappop(q)
        # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
        if distance[now] < dist:
            continue
        # 현재 노드와 연결된 다른 인접한 노드들을 확인
        for i in graph[now]:
            cost = dist + i[1]
            # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

# 다익스트라 알고리즘을 수행
dijkstra(start)

# 모든 노드로 가기 위한 최단 거리를 출력
for i in range(1, n + 1):
    # 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
    if distance[i] == INF:
        print("INFINITY")
    # 도달할 수 있는 경우 거리를 출력
    else:
        print(distance[i])
  • 모든 지점 다른 모든 지점까지의 거리
    • 플로이드 워셜
      • 다이나믹 프로그래밍
    • O(V^3)
    • a에서 b까지 그냥 가는 것보다 한 점을 거처가는게 적으면 그것으로 갱신해 주겠다.
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수 및 간선의 개수를 입력받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용은 C라고 설정
    a, b, c = map(int, input().split())
    graph[a][b] = c

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

# 수행된 결과를 출력
for a in range(1, n + 1):
    for b in range(1, n + 1):
        # 도달할 수 없는 경우, 무한(INFINITY)이라고 출력
        if graph[a][b] == 1e9:
            print("INFINITY", end=" ")
        # 도달할 수 있는 경우 거리를 출력
        else:
            print(graph[a][b], end=" ")
    print()

Dab = min(Dab,+Dak+Dkb)

  • 우선 순위 큐를 구현하기 위한 자료구조
    • 파이썬은 최소 힙
      • 최대힙 쓰려면 - 붙여 저장하고 -붙여 뺀다.
  • 스택은 가장 나중에 삽입된 데이터를 먼저 삭제
  • 큐는 가장 먼저 삽입된 데이터를 먼저 삭제
  • 우선순위 큐는 우선순위가 가장 높은 데이터를 삭제한다.
    • PriorityQueue
    • heapq
  • (가치, 물건)
    • 대부분의 프로그래밍 언어에서는 우선순위 큐 라이브러리에 데이터 묶음을 넣으면, 첫번째 원소를 기준으로 우선순위를 설정한다.
자료구조 추출되는 데이터
스택 가장 나중에 삽입된 데이터
가장 먼저 삽입된 데이터
우선순위큐 가장 우선순위가 높은 데이터
INF = int(1e9) # 무한 의미 10억
  • n은 노드의 개수

  • m은 간선의 개수

  • 모든 간선을 힙에 넣었다가 빼는 것으로 생각할 수 있음

  • V노드의 개수

  • E간선의 개수 <=V^2(전부연결)

1. 플로이드

  • 이름 그대로 플로이드와샬 사용
  • 노선이 하나가 아닐 수 있음
    • 최소 비용만 저장
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수 및 간선의 개수를 입력받기
n = int(input())
m = int(input())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용은 C라고 설정
    a, b, c = map(int, input().split())
    # 가장 짧은 간선 정보만 저장
    if c < graph[a][b]:
        graph[a][b] = c

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

# 수행된 결과를 출력
for a in range(1, n + 1):
    for b in range(1, n + 1):
        # 도달할 수 없는 경우, 0을 출력
        if graph[a][b] == INF:
            print(0, end=" ")
        # 도달할 수 있는 경우 거리를 출력
        else:
            print(graph[a][b], end=" ")
    print()

2. 정확한 순위

  • 성적이 낮은 학생이 성적이 높은 학생을 가리키는 방향 그래프

    • 최단 경로 알고리즘 수행
  • A->B or A<-B 가능하면 성적 비교 가능

    • 둘 다 안되면 성적 비교 불가능
  • 플로이드와샬

INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 2차원 리스트(그래프 표현)를 만들고, 모든 값을 무한으로 초기화
graph = [[INF] * (n + 1) for _ in range(n + 1)]

# 자기 자신에서 자기 자신으로 가는 비용은 0으로 초기화
for a in range(1, n + 1):
    for b in range(1, n + 1):
        if a == b:
            graph[a][b] = 0

# 각 간선에 대한 정보를 입력 받아, 그 값으로 초기화
for _ in range(m):
    # A에서 B로 가는 비용을 1로 설정
    a, b = map(int, input().split())
    graph[a][b] = 1

# 점화식에 따라 플로이드 워셜 알고리즘을 수행
for k in range(1, n + 1):
    for a in range(1, n + 1):
        for b in range(1, n + 1):
            graph[a][b] = min(graph[a][b], graph[a][k] + graph[k][b])

result = 0
# 각 학생을 번호에 따라 한 명씩 확인하며 도달 가능한지 체크
for i in range(1, n + 1):
    count = 0
    for j in range(1, n + 1):
        if graph[i][j] != INF or graph[j][i] != INF:
            count += 1
    if count == n:
        result += 1
print(result)

3. 화성 탐사

  • 2차원 공간을 노드로 바꾼다.
  • 시간 초과로 다익스트라
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

dx = [-1, 0, 1, 0]
dy = [0, 1, 0, -1]

# 전체 테스트 케이스(Test Case)만큼 반복
for tc in range(int(input())):
    # 노드의 개수를 입력받기
    n = int(input())

    # 전체 맵 정보를 입력받기
    graph = []
    for i in range(n):
        graph.append(list(map(int, input().split())))

    # 최단 거리 테이블을 모두 무한으로 초기화
    distance = [[INF] * n for _ in range(n)]

    x, y = 0, 0 # 시작 위치는 (0, 0)
    # 시작 노드로 가기 위한 비용은 (0, 0) 위치의 값으로 설정하여, 큐에 삽입
    q = [(graph[x][y], x, y)]
    distance[x][y] = graph[x][y]

    # 다익스트라 알고리즘을 수행
    while q:
          # 가장 최단 거리가 짧은 노드에 대한 정보를 꺼내기
          dist, x, y = heapq.heappop(q)
          # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
          if distance[x][y] < dist:
              continue
          # 현재 노드와 연결된 다른 인접한 노드들을 확인
          for i in range(4):
              nx = x + dx[i]
              ny = y + dy[i]
              # 맵의 범위를 벗어나는 경우 무시
              if nx < 0 or nx >= n or ny < 0 or ny >= n:
                  continue
              cost = dist + graph[nx][ny]
              # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
              if cost < distance[nx][ny]:
                  distance[nx][ny] = cost
                  heapq.heappush(q, (cost, nx, ny))

    print(distance[n - 1][n - 1])

4. 숨바꼭질

  • 거리가 1이기 때문에 BFS도 가능
import heapq
import sys
input = sys.stdin.readline
INF = int(1e9) # 무한을 의미하는 값으로 10억을 설정

# 노드의 개수, 간선의 개수를 입력받기
n, m = map(int, input().split())
# 시작 노드를 1번 헛간으로 설정
start = 1
# 각 노드에 연결되어 있는 노드에 대한 정보를 담는 리스트를 만들기
graph = [[] for i in range(n + 1)]
# 최단 거리 테이블을 모두 무한으로 초기화
distance = [INF] * (n + 1)

# 모든 간선 정보를 입력받기
for _ in range(m):
    a, b = map(int, input().split())
    # a번 노드와 b번 노드의 이동 비용이 1이라는 의미(양방향)
    graph[a].append((b, 1))
    graph[b].append((a, 1))

def dijkstra(start):
    q = []
    # 시작 노드로 가기 위한 최단 경로는 0으로 설정하여, 큐에 삽입
    heapq.heappush(q, (0, start))
    distance[start] = 0
    while q: # 큐가 비어있지 않다면
        # 가장 최단 거리가 짧은 노드에 대한 정보를 꺼내기
        dist, now = heapq.heappop(q)
        # 현재 노드가 이미 처리된 적이 있는 노드라면 무시
        if distance[now] < dist:
            continue
        # 현재 노드와 연결된 다른 인접한 노드들을 확인
        for i in graph[now]:
            cost = dist + i[1]
            # 현재 노드를 거쳐서, 다른 노드로 이동하는 거리가 더 짧은 경우
            if cost < distance[i[0]]:
                distance[i[0]] = cost
                heapq.heappush(q, (cost, i[0]))

# 다익스트라 알고리즘을 수행
dijkstra(start)

# 가장 최단 거리가 먼 노드 번호(동빈이가 숨을 헛간의 번호)
max_node = 0
# 도달할 수 있는 노드 중에서, 가장 최단 거리가 먼 노드와의 최단 거리
max_distance = 0
# 가장 최단 거리가 먼 노드와의 최단 거리와 동일한 최단 거리를 가지는 노드들의 리스트
result = []

for i in range(1, n + 1):
    if max_distance < distance[i]:
        max_node = i
        max_distance = distance[i]
        result = [max_node]
    elif max_distance == distance[i]:
        result.append(i)

print(max_node, max_distance, len(result))
반응형